Annual Drinking Water Quality Report for 2023 Millers Trailer Park Norwich, NY (Public Water Supply ID#NY0800627)

INTRODUCTION

To comply with State regulations Millers Trailer Park will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Last year, your tap water met all State drinking water health standards. We are proud to report that our system did not violate a maximum contaminant level or any other water quality standard. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

If you have any questions about this report or concerning your drinking water, please contact Eric Larsen, owner, at (607) 334-5653. We want you to be informed about your drinking water. If you want to learn more, please contact us and we will be willing to discuss any drinking water issues with you.

WHERE DOES OUR WATER COME FROM?

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the amounts of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water system serves 50 people through 35 service connections. Our water source is a well which is located in the pump house on the north side of the park adjacent to the play area. In 2023, our water was untreated prior to distribution.

ARE THERE CONTAMINANTS IN OUR DRINKING WATER?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, haloacetic acids, radiological, synthetic organic compounds, PFAS, and 1,4-Dioxane. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old.

It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791) or the Chenango County Health Department at (607) 337-1673.

Tab	le of	Det	ected	Con	tami	inants

Contaminant	Violation Yes/No	Date of Sample	Level Detected (Range)	Unit of Measurement	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination
			Inorganic (Contaminants			
Nitrate	No	10/25/23	1.54	mg/l	10	10	Erosion of natural deposits; Agricultural runoff, fertilizers
Barium	No	5/18/22	0.0306	mg/l	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Lead ¹	No	8/25/22	0.00085 (<0.001 0 - 0.0017)	mg/l	0	AL=0.015	Corrosion of household plumbing systems; Erosion of natural deposits.
Copper ¹	No	8/25/22	0.076 (0.0020- 0.081)	mg/l	1.3	AL=1.3	Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives

Emerging Contaminants (Synthetic Organic Contaminants)⁴

Perfluoroctane Sulfonic Acid (PFOS) ³	No	12/14/23	0.733	ng/l	n/a	MCL=10	Released into the environment from widespread use in commercial and industrial applications.
Perfluoroctanoic Acid (PFOA) ³	No	12/14/23	1.34	ng/l	n/a	MCL=10	Released into the environment from widespread use in commercial and industrial applications.

Contaminant	Violation Yes/No	Date of Sample	Level Detected (Range)	Unit of Measurement	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination
Perfluorobutane Sulfonic Acid (PFBS) ³	No	12/14/23	0.736	ng/l	n/a	MCL=10	Released into the environment from widespread use in commercial and industrial applications.

Perfluorobutanonic Acid (PFBA) ³	No	12/14/23	1.76	ng/l	n/a	MCL = 10	Released into the environment from widespread use in commercial and industrial applications.
Perfluorohexanoic Acid (PFHxA) ³	No	12/14/23	0.676	ng/l	n/a	MCL= 10	Released into the environment from widespread use in commercial and industrial applications.
Perfluoropentanoic Acid (PfPeA) ³	No	12/14/23	0.725	ng/l	n/a	MCL=10	Released into the environment from widespread use in commercial and industrial applications.

Bacteriological Contaminants

Total Coliform ²	No	8/2/23- 8/4/23	3 positive samples	Positive / Negative	n/a	TT = 2 or more positive samples in one month.	Naturally present in the environment
Total Coliform ²	No	10/4/23- 10/10/23	4 positive samples	Positive / Negative	n/a	TT = 2 or more positive samples in one month.	Naturally present in the environment

- 1- During 2022 we collected and analyzed 5 samples for lead and copper. The level presented represents the 90th percentile of 5 tested sites. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead and copper values detected at your water system. The action levels for lead and copper were not exceeded at any of the test sites.
- 2- Due to having more than 2 total coliform positive routine/repeat samples in the same month, we triggered a Level 1 assessment. This assessment is to assess the coliform contamination and take corrective action against sanitary defects in the water system. Our corrective action included the installation of a chlorination disinfection system for our water in 2024. We remained on a Boil Water Order until this disinfection system was installed.
- 3-These sample results were labeled by the laboratory as "J Qualifiers". This represents an estimated concentration for Tentatively Identified Compounds.
- 4 Due to the Emerging Contaminant regulation, sampling of PFAS chemicals is required.

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Non-Detects (ND): Laboratory analysis indicates that the constituent is not present.

Nephelometric Turbidity Unit (NTU): A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

Nanograms per liter (ng/l): Corresponds to one part of liquid to one trillion parts of liquid (parts per trillion - ppt).

<u>Picograms per liter (pg/l)</u>: Corresponds to one part per of liquid to one quadrillion parts of liquid (parts per quadrillion – ppq).

Picocuries per liter (pCi/L): A measure of the radioactivity in water.

Millirems per year (mrem/yr): A measure of radiation absorbed by the body.

Million Fibers per Liter (MFL): A measure of the presence of asbestos fibers that are longer than 10 micrometers.

WHAT DOES THIS INFORMATION MEAN?

As you can see by the table, our system had no violations. We have learned through our testing that some contaminants have been detected.

Information About Lead

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Millers MHP is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact If you have any questions about this report or concerning your drinking water, please contact Eric Larsen at (607) 334-5653. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS?

In 2023, after two routine water samples and several repeat water samples tested positive for total coliform, our Certificate of Waiver from disinfection was revoked. Our water system was then placed on a Boil Water Order and was required to install a chlorination disinfection system. Also in December of 2023, we failed to collect a monthly Total Coliform sample and we were issued a Notice of Violation. As the sample was not collected, we cannot be certain of our water quality at that time.

DO I NEED TO TAKE SPECIAL PRECAUTIONS?

Although our drinking water met or exceeded state and federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791).

INFORMATION FOR NON-ENGLISH SPEAKING RESIDENTS

Spanish: Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

French: Ce rapport contient des informations importantes sur votre eau potable. Traduisez-le ou parlez en avec quelqu'un qui le comprend bien.

WHY SAVE WATER AND HOW TO AVOID WASTING IT?

Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water:

- Saving water saves energy and some of the costs associated with both of these necessities of life;
- Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and

Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential firefighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a
 run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year.

CLOSING

We at Millers Trailer Park work to provide top quality water to every tap. Thank you for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future. Please call our office at (607) 334-5653 if you have questions.